ASSESSING ALTERNATIVES IN VIEW OF UNCERTAINTY IN TOXICOLOGICAL DATA: NEW APPROACH METHODS (NAMS)

HANS PLUGGE

SAFER CHEMICAL ANALYTICS LLC NOVEMBER 2021

CONCLUSION

SAFER CHEMICAL ANALYTICS LLC

- New Approach Methods aka NAMs are presently used to screen "new" chemicals
- Due to varying restrictions on animal testing, NAMs may be the only regulatory methods available to assess the toxicity of alternatives
- Alternatives are thus mostly evaluated using NAMs
- In regulatory use however, NAMs have been penalized by high "uncertainty factors"
- Use of NAMs thus may result in rejection of alternatives at the regulatory level even though initial AA may have been favorable

ALTERNATIVES ASSESSMENT (AA)

- AA of chemicals or processes
- Introduction of alternative, better and greener chemicals driven by increasing regulatory pressure and introduction of "new" toxicological data
- AA evaluates the (eco)toxicological parameters including environmental persistence, of available or *de novo* alternatives
- Feasibility of Alternatives
- Maintaining Functionality in Alternatives is important
- "NEW" chemicals require toxicological data mostly derived using NAMs (New Approach Methods)

ACQUIRING NEW TOXICOLOGY DATA

- AA's by design incorporate lots of new chemicals/products
- New chemicals have little available data
- Traditional/old school toxicology data acquisition is expensive, if allowed
 - Animal testing is increasingly disallowed, except perhaps for ECHA
- NAMs were developed to address these concerns
 - Quicker, cheaper and more ethical
 - https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/alternative-test-methods-and-strategies-reduce
- Why not use NAMs for everything?
 - Regulatory acceptance versus validation
 - Lack of AOPs (Advanced Outcome Pathways) and assays

UNCERTAINTY

- Major concern: interpretation of NAMs re human/environmental risk
 - "addressed" via additional "uncertainty" factors
- Most NAMs are human/organism (in vitro cell) based tests
 - No need for animal to human extrapolation
- Traditional "gold standard" animal tests are much less certain than "expected"
- Variability/uncertainty for repeat animal tests is on at least an order of magnitude scale i.e., 3 implies somewhere between 1 and 10.

Pham et al.,2020 "Variability in in vivo studies: Defining the upper limit of performance for predictions of systemic effect levels," < https://doi.org/10.1016/j.comtox.2020.100126

 Conclusion: NAMs only have to be as good as traditional animal tests

SAFER CHEMICAL ANALYTICS LLC

SKIN SENSITIZATION AOP ADVERSE OUTCOME PATHWAY

DEFINED APPROACH IS BETTER THAN HUMAN DATA

Model		CCR	Sensitivity	PPV	Specificity	NPV
Human	in vivo	0.82	0.94	0.86	0.70	0.86
LLNA	animal <i>in vivo</i>	0.59	0.65	0.71	0.54	0.47
DPRA	in vitro	0.67	0.84	0.75	0.50	0.64
KeratinoSense	in vitro	0.54	0.84	0.66	0.24	0.46
h-CLAT	in vitro	0.57	0.92	0.68	0.22	0.61
Bayesian Model	NAM	0.89	0.94	0.91	0.84	0.80

CCR: Correct Classification Rate PPV: Positive Predictive Value NPV: Negative Predictive Value

Adapted from Alvez et al 2018, https://www.researchgate.net/publication/323009353 A_Perspective_and a_New_Integrated_Computational_Strategy_for_Skin_Sensitization_Assessment

Also see Golden et al 2020 , https://www.altex.org/index.php/altex/article/view/1492/2180

NAMS >= HUMAN DATA>>ANIMAL DATA

- Several of these approaches validate NAMs derived data as being equal or better than Human derived data
- NAMs are superior to Animal data
- ECHA very recently endorsed this approach

https://echa.europa.eu/documents/10162/21650280/oecd_test_guidelines_skin_sensitisation_en.pdf/40baa98d-fc4b-4bae-a26a-49f2b0d0cf63

- Skin sensitization NAMs are thus "solved"
- Similar approaches need to be developed/validated for other health and environmental endpoints – in progress

ISOTHIAZOLINONES CASE STUDY

USEPA OPP (Office of Pesticide Programs) test case

- https://www.regulations.gov/document/EPA-HQ-OPP-2015-0736-0008
- Isothiazolinones
 - a new class of biocide

Skin sensitization data were derived from NAMs in a Defined Approach

- Hirota M, et al. (2015) Evaluation of combinations of *in vitro* sensitization test descriptors for the artificial neural network-based risk assessment model of skin sensitization. Journal of Applied Toxicology 35:1333-1347
- Systemic toxicity data from traditional, animal test methods

SELECTED ISOT HIAZOLINONE STRUCTURES

BIT 1,2 Benzisothiazolin-3-one

MIT 2-Methyl-4-isothiazolin-3-one

OIT 2-n-Octyl-4-isothiazolin-3-one

NAMS VS LLNA DATA (FROM USEPA)

Table 5. Quantitative EC3 Prediction for Isothiazolinones (Extracted from Table 7 of the

Chemical	Dow LLNA EC3 (%)	NICEATM LLNA EC3 (%) ^a	DA: ANN D hC ^b EC3 (%) ^a	DA: ANN D hC KS ^e EC3 (%) ^a
DCOIT	0.004	0.008 (0-0.053)	0.0566 (0.0555 – 0.0578)	0.023 (0.02 – 0.026)
CMIT/MIT	0.002	0.018 (0.0011-0.034)	0.121 (0.119 – 0.123)	0.492 (0.4 – 0.605)
OIT	0.2-0.25	0.361 (0.029-0.69)	0.0569 (0.0559 – 0.058)	0.015 (0.013 – 0.017)
МІТ	0.863	1.154 (0-3.476)	1.775 (1.732 – 1.818)	0.826 (0.759 – 0.9)
BIT	1.54	10.57 (0-23.36)	0.934 (0.909 – 0.959)	0.341 (0.317 – 0.367)
BBIT	NA	NA	0.148 (0.146 - 0.151)	0.061 (0.055 - 0.068)

NTP/NICEATM Report)

^a Numbers in parentheses are the 95% confidence limits

^b Model 1 from Hirota et al., 2015: DPRA + h-CLAT

^cModel 4 from Hirota et al., 2015: DPRA + h-CLAT + KeratinoSens

Data from https://www.regulations.gov/document/EPA-HQ-OPP-2015-0736-0008

SAFER CHEMICAL ANALYTICS LLC

UNCERTAINTY FACTORS

BIT Induction: Average <i>in vitro</i> EC3 = 0.34% (85 μg/cm ²) 95% Confidence Interval = 0.32 to 0.37%	UF = 100x (UF _A = 10X, UF _H = 10X)	Based on Model 4 from Hirota <i>et al.</i> 2015: DPRA + h-CLAT + KeratinoSens
--	--	---

Uncertainty factor of 10 x 10 for extrapolation of NAMs for induction of skin sensitization (originally was 100 x 100)

The use of induction threshold values for the other members of the isothiazolinone class utilizes an uncertainty factor of 100. This factor includes the inter-species extrapolation factor of 10 (sic: since the data are based on animal studies), and an intra-species factor of 10.

Vs 10-100 for animal acute/chronic tox data

• The use of intra species factor of 3!

SAFER CHEMICAL ANALYTICS LLC

NAMS IN REGULATORY USE AS SHOWN HERE

- Skin Sensitization has the most validated NAMs (>10)
- Concordance: NAMs >= humans
- On a regulatory level, NAMs data would have to indicate 10 times less toxicity as compared to animal/human tests to make for a viable alternative
- Better acceptance of NAMs <u>validation</u> would go far to diminish this penalty
- "uncertainty" factors are not based on data analytics
- ECHA guidance is similar
 SAFER CHEMICAL ANALYTICS LLC

CONCLUSION

- NAMs are presently used to screen "new" chemicals
- Due to varying restrictions on animal testing, NAMs may be the only methods available to assess the toxicity of alternatives
- Alternatives are thus mostly assessed using NAMs
- In regulatory use NAMs have been penalized by high "uncertainty factors"
- Assessment of Alternatives thus may result in rejection of alternatives at the regulatory level even though initial AA may have been favorable
- Assessment ("uncertainty") factors need to be based on (validation) analytics not ballpark estimates

THANK YOU!

hans.plugge@saferchemicalanalyticsllc.com

(+1) 410-446-7986

